
Journal of Global Optimization14: 1–25, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

1

Efficient and Adaptive Lagrange-Multiplier
Methods for Nonlinear Continuous Global
Optimization

BENJAMIN W. WAH and TAO WANG
Department of Electrical and Computer Engineering and the Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
E-mail: wah, wangtao@manip.crhc.uiuc.edu

(Received 11 September 1997; accepted 24 March 1998)

Abstract. Lagrangian methods are popular in solving continuous constrained optimization prob-
lems. In this paper, we address three important issues in applying Lagrangian methods to solve
optimization problems with inequality constraints. First, we study methods to transform inequality
constraints into equality constraints. An existing method, called the slack-variable method, adds a
slack variable to each inequality constraint in order to transform it into an equality constraint. Its
disadvantage is that when the search trajectory is inside a feasible region, some satisfied constraints
may still pose some effect on the Lagrangian function, leading to possible oscillations and divergence
when a local minimum lies on the boundary of the feasible region. To overcome this problem, we
propose theMaxQ method that carries no effect on satisfied constraints. Hence, minimizing the
Lagrangian function in a feasible region always leads to a local minimum of the objective function.
We also study some strategies to speed up its convergence. Second, we study methods to improve the
convergence speed of Lagrangian methods without affecting the solution quality. This is done by an
adaptive-control strategy that dynamically adjusts the relative weights between the objective and the
Lagrangian part, leading to better balance between the two and faster convergence. Third, we study
a trace-based method to pull the search trajectory from one saddle point to another in a continuous
fashion without restarts. This overcomes one of the problems in existing Lagrangian methods that
converges only to one saddle point and requires random restarts to look for new saddle points, often
missing good saddle points in the vicinity of saddle points already found. Finally, we describe a
prototypeNovel(Nonlinear Optimization via External Lead) that implements our proposed strategies
and present improved solutions in solving a collection of benchmarks.

Key words: Adaptive weights, Convergence speed, Global search, Inequality constraints, Lagrange-
multiplier method, Local search, Nonlinear continuous constrained optimization, Oscillations, Trace-
based search method

1. Introduction

Many applications in engineering, decision science and operation research are
formulated as optimization problems. These applications include digital signal pro-
cessing, structure optimization, engineering design, neural-network learning,
computer-aided design for VLSI, and chemical control processing. High-quality

166483

2 B.W. WAH AND T. WANG

solutions in these applications may have significant economical impacts, leading
to lower implementation and maintenance costs while improving the quality of
outputs.

Theconstrained nonlinear global optimization problemsthat we study take the
following form

minimize f (X)

subject to g(X) 6 0 X = (x1, . . . , xn) ∈ Rn (1)

h(X) = 0

wheref (X) is an objective function,g(X) = [g1(X), . . . , gk(X)]T is a set ofk
inequality constraints, andh(X) = [h1(X), . . . , hm(X)]T is a set ofm equality
constraints. Allf (X), g(X), andh(X) are assumed to be (nonlinear) differentiable
real-valued continuous functions.

Global minimization looks for a solution that satisfies all the constraints and is
no larger than any other local minimum. This is a challenging problem as there
may not be enough time to find a feasible solution, or even if a feasible solution
is found, there is no way to show that it is minimal. In practice, one only seeks as
many local minima as possible that satisfy the constraints, and pick the best local
minimum. Active research in the past three decades has produced a variety of meth-
ods to find solutions to constrained nonconvex nonlinear continuous optimization
problems [7, 9, 10, 15, 19, 29]. In general, they are divided into transformational
and non-transformational methods.

Non-transformational approachesinclude discarding methods, back-to-feasible-
region methods, and enumerative methods. Discarding methods [11, 15] drop so-
lutions once they are found to be infeasible, while back-to-feasible-region meth-
ods [12] attempt to maintain feasibility by reflecting moves from boundaries if
such moves go out of the current feasible region. Both of these methods have
been combined with global search and do not involve transformations to relax
constraints. Last, enumerative methods [10] are generally too expensive to ap-
ply except for problems with linear objectives and constraints, and for bilinear
programming problems [1].

Transformational approaches, on the other hand, transform a problem into an-
other form before solving it. Some well-known methods include penalty, barrier,
and Lagrange-multiplier methods [14].Penalty methodstransform constraints into
part of the objective function and require tuning penalty coefficients either before
or during the search.Barrier methodsare similar except that barriers are set up to
prevent solutions from going out of feasible regions. Both methods have difficulties
when they start from an infeasible region or when feasible solutions are hard to
find. However, they can be combined with other methods to improve their quality.

Lagrange-multiplier methods(or Lagrangian methods) introduce Lagrange vari-
ables to gradually resolve constraints through iterative updates. They are exact
methods that optimize the objective using Lagrange multipliers to meet the Kuhn–
Tucker conditions [14]. In view of their advantages, we use them for constraint

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 3

relaxation in this paper. Given an optimization problem with only equality con-
straints,

minimize f (X)

subject to h(X) = 0 (2)

the correspondingLagrangian functionand augmented Lagrangian functionare
defined as

L(X, λ) = f (X)+ λT h(X) (3)

L(X, λ) = f (X)+ λT h(X)+ ||h(X)||22 (4)

whereλ = [λ1, . . . , λm] is a set of Lagrange multipliers. We use the augmented
Lagrangian function in this paper as it provides better numerical stability.

According to classical optimization theory [14], all the extrema of (4) (called
saddle points), whether local or global, are roots of the following set of first-order
necessary conditions.

5XL(X, λ) = 0 5λL(X, λ) = 0 (5)

These conditions are necessary to guarantee the (local) optimality to the solution
of (2). Because a saddle point is a local minimum of the Lagrangian function
L(X, λ) in the original-variable (X) space and a local maximum ofL(X, λ) in the
Lagrange-multiplier (λ) space, it can be obtained by solving the following dynamic
system of equations

d

dt
X(t) = −5XL(X(t), λ(t)) d

dt
λ(t) = 5λL(X(t), λ(t)) (6)

which perform descents in the original-variable space ofX and ascents in the
Lagrange-multiplier space ofλ.

The goal of this paper is to develop new strategies to improve the convergence
speed and solution quality of Lagrangian methods. We achieve this by three ap-
proaches. First, we study in Section 2 methods to eliminate oscillations when
inequality constraints are transformed into equality constraints. These help im-
prove convergence time as compared to existing methods of adding slack variables.
Second, we present in Section 3 a method to improve the convergence speed of
Lagrangian methods by adaptively adjusting the relative weights between the ob-
jective and the constraints. Third, we discuss in Section 4 a global-search method
that looks for multiple saddle points in a continuous trajectory, without restarting
the search from random starting points. We also present our prototypeNovelthat
integrates these strategies. Finally, we show in Section 5 new improved results on
a collection of benchmarks.

2. Handling inequality constraints

Lagrangian methods work well with equality constraints, but cannot directly deal
with inequality constraints (1), except in some simple cases where one can directly

4 B.W. WAH AND T. WANG

solve the first-order equations in closed form. In general, inequality constraints are
first transformed into equivalent equality constraints before Lagrangian methods
can be applied.

2.1. TRANSFORMATION USING SLACK VARIABLES

One possible transformation [14] to handle inequality constraintgi(X) 6 0, i =
1, · · · , k, is to add a slack variablezi to transform it into an equality constraint
gi(X)+ z2

i = 0. After simplification [14], the augmented Lagrangian function for
problem (1) becomes

Lz(X, λ,µ) =f (x)+ λT h(X)+ ||h(X)||22
+

k∑
i=1

[
max2(0, µi + gi(X))− µ2

i

]
(7)

whereλ andµ are Lagrange multipliers. In the same way as (6), a saddle point
to (7) can be reached by doing descents in theX space and ascents in theλ andµ
space.

The balance between descents and ascents depends on the magnitudes of La-
grange multipliersλ andµ, which play a role in balancing objectivef (X) and
constraintsh(X) and g(X) and in controlling indirectly the convergence speed
and solution quality of the Lagrangian method. At a saddle point, the forces due to
descent and ascent reach a balance through appropriate Lagrange-multiplier values.

To emphasize how the relative weights affect the convergence speed and solu-
tion quality, we introduce an additional weightw into (7) and get

L0(X, λ,µ) =w f (x)+ λT h(X)+ ||h(X)||22
+

k∑
i=1

[
max2(0, µi + gi(X))− µ2

i

]
(8)

wherew>0 is a weight on the objective. Whenw=1,L0(X, λ,µ)=Lz(X, λ,µ),
which is the original Lagrangian function. The corresponding dynamic system is
as follows:

d

dt
X(t) = −5XL0(X(t), λ(t), µ(t)) (9)

d

dt
λ(t) = 5λL0(X(t), λ(t), µ(t)) (10)

d

dt
µ(t) = 5µL0(X(t), λ(t), µ(t)) (11)

Starting from an initial point(X(0), λ(0), µ(0)), we solve the dynamic equa-
tions (9)–(11) using an ordinary differential equation solverLSODE? and observe a
? LSODE is a solver for first-order ordinary differential equations, a public-domain package

available from http://www.netlib.org.

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 5

search trajectory(X(t), λ(t), µ(t)). When a saddle point is on the boundary of the
feasible region (which is true for most problems in the benchmark collection [6]),
the dynamic equation approaches it from both the inside and outside of the feasible
region. We observe three behaviors of the search trajectory:
• The trajectory gradually reduces its oscillations and eventually converges;
• The trajectory oscillates within some range but never converges;
• The magnitude of oscillations increases, and the trajectory eventually di-

verges.
To illustrate these three behaviors (divergence, oscillations without convergence,
and reduction of oscillations until convergence), we apply (9)–(11) to solve Prob-
lem 2.3 in [6], which is given as follows:

Minimize 5x2 + 5x3 + 5x4 + 5x5 − x6 − x7 − x8 − x9− x10− 8x11− 8x12 (12)

− 8x13− x14− 5x2
2 − 5x2

3 − 5x2
4 − 5x2

5

subject to 2x2 + 2x3 + 8x11+ 8x126 10.0, 06 xi 6 1.0, i = 2, 3, . . . ,14,

2x2 + 2x4 + 8x11+ 8x136 10.0, 2x3 + 2x4 + 8x12+ 8x13 6 10.0,

8x11− 8x2 6 0.0, 8x12− 8x3 6 0.0,

8x13− 8x4 6 0.0, − 2x5 − x6 + 8x116 0.0,

− 2x7 − x8+ 8x12 6 0.0, − 2x9 − x10+ 8x13 6 0.0,

It is a quadratic nonlinear programming problem with linear inequality constraints.
We setX(t = 0), the initial point att = 0, at the middle of the search space, i.e.,
xi = 0.5, i = 2,3, . . . ,14 andλ(t = 0) = µ(t = 0) = 0. We further set the
maximum (logical) time forLSODEto betmax = 105, which is divided into small
units of4t = 1.0, resulting in a maximum of 105 iterations (= tmax/ 4 t). The
stopping condition for (9)–(11) is the Lyupunov condition:

||dX(t)/dt||2 + ||dλ(t)/dt||2 + ||dµ(t)/dt||2 6 δ = 10−25 (13)

The dynamic system stops when it converges or when it reaches the maximum
number of iterations.

Whenw = 1, (9)–(11) diverge quickly into infinity, meaning that the original
Lagrangian method will diverge. If we scale the objective by 10 (i.e.,w = 1/10),
then the objective valuef (X(t)) oscillates within the range[−17,−10], while
the maximum violationvmax(t) is between 0 and 0.4, as shown in Figure 1. Here,
vmax(t) at timet is defined as

vmax(t) = max
16i6m,16j6k

{|hi(X(t))|,max
[
0, gj (X(t))

]} (14)

If we further reducew to 1/15, then the oscillations subside, and the trajectory
eventually converges (see Figure 2).

Intuitively, the occurrence of oscillations can be explained as follows. Suppose
we start from an infeasible point initially (t = 0) where inequality constraint
gi(X(t = 0)) is violated; i.e.,gi(X(t = 0)) > 0. As the search progresses, the

6 B.W. WAH AND T. WANG

-20

-18

-16

-14

-12

-10

-8

0 0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e

Iterations (*1000)

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure 1. The objective and maximum violation oscillate using the slack-variable method
(w = 1

10).

correspondingµi(t) increases and pushes the trajectory towards a feasible region.
At some timet , the inequality constraintgi(X(t)) 6 0 is satisfied for the current
pointX(t). At this point,dµi(t)/dt = max(0, gi(X) + µi) − µi , and is negative
whengi(X) < 0. Hence, the trajectory decelerates but continues to move into the
feasible region even when the corresponding constraint,gi(X(t)), is satisfied. The
movement of the trajectory inside the feasible region eventually stops because the
local minimum is on the boundary, and the corresponding force due to descents
in the objective space pushes the trajectory outside the feasible region. Likewise,
when the trajectory is outside the feasible region, a force due to the constraints
pushes the trajectory inside the feasible region. If these two forces are not well
balanced, the search may diverge or oscillate without convergence.

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 7

-12.2

-12

-11.8

-11.6

-11.4

-11.2

-11

-10.8

-10.6

-10.4

-10.2

-10

0 0.05 0.1 0.15 0.2 0.25

O
bj

ec
tiv

e

Iterations (*1000)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure 2. The objective and maximum violation converge after oscillations subside using the
slack-variable method (w = 1

15).

2.2. TRANSFORMATION USING THE MAXQ METHOD

To avoid oscillations in the method based on slack variables, we would like a search
to converge to a local minimum without oscillations when it is on the boundary of
a feasible region and when the trajectory is outside the feasible region. This is done
by our proposedMaxQmethod.

Without loss of generality, we ignore equality constraints in the following dis-
cussion for simplicity, knowing that equality constraints are handled in the way
described in Section 1. TheMaxQ method transforms an inequality constraint as
follows.

gi(X) 6 0 ⇐⇒ pi(X) = [max(0, gi (X))]qi = 0

qi > 1, i = 1, . . . , k (15)

whereqi are control parameters to be determined later. For a givenX, if gi(X) > 0,
[max(0, gi(X))]qi = [gi(X)]qi ; otherwise,[max(0, gi(X))]qi = 0. The augmented
Lagrangian function is

Lq(X,µ) = f (X)+ µT p(X)+ ||p(X)||22
= f (X)+

k∑
i=1

[
µipi(X)+ p2

i (X)
]

(16)

wherep(X) = [p1(X), p2(X), . . . , pk(X)]T .
It is important to choose suitable control parametersqi (i = 1, . . . , k) be-

cause they affect the convergence speed of our method. One can easily show that,
whenqi > 1, inequality constraintgi(X) 6 0 is equivalent to equality constraint
pi(X) = maxqi (0, gi (X)) = 0. Suppose thatqi is a constant. Using a dynamic
system similar to that in (9)–(11) to solve Lagrangian function (16), we need to
evaluate partial derivative5Xpi(X), where

5Xpi(X) = qi[max(0, gi(X))]qi−15X gi(X) = p′i (X)5X gi(X)

8 B.W. WAH AND T. WANG

If qi 6 1, p′i (X) is not continuous, and the derivative ofLq(X,µ) is not contin-
uous whengi(X) = 0. However, the continuity of derivatives is required by most
differential-equation solvers, such asLSODE. For this reason, we requireqi > 1
in (15).

One way of selectingqi is to make it very close to 1, namely,qi → 1. At this
point, the dynamic system will approach a feasible region slowly when the saddle
point is on the boundary of the feasible region. This is true becausep′i (X) ' 1 if
gi(X) > 0, independent of how far the current pointX is away from the feasible
region. Thus, larger control parametersqi are needed for fast convergence if the
current pointX is far from the feasible region. In contrast, if we chooseqi �
1, thenp′i(X) ' 0 asgi(X) → 0, meaning thatLSODEconverges very slowly
towards the saddle point on the boundary of the feasible region.

Taking these facts into account, in order to have fast convergence, we should
adaptqi dynamically as the search goes to a saddle point. Since different inequality
constraints may have different convergence rates to the saddle point, we associate
inequality constraintgi(X) 6 0 with its own control parameterqi. Each parameter
will be updated dynamically based on the value ofgi(X): qi is large ifgi(X)� 0,
andqi is gradually reduced to a value approaching 1 when the search is close to
the saddle point on the boundary. One possible choice ofqi is as follows:

qi(gi(X)) = s0

1+ exp(−s1gi(X)) (17)

wheres0 = 2 ands1 > 0 are two parameters that control the shape of function
qi(x). Whengi(X) approaches 0,qi will approach 1. The dynamic equation to
solve (16) is

d

dt
X(t) =−5XLq(X(t), µ(t)) = −5X f (X)

−
k∑
i=1

(µi + 2pi(X))5Xpi(X) (18)

d

dt
µi(t) =5µLq(X(t), µ(t)) = pi(X) (19)

where

5Xpi(X) =
[
q ′i (gi(X))pi(X) loge max(0, gi(X))

+qi(gi(X))[max(0, gi(X))]qi(gi(X))−1
]5Xgi(X) (20)

In the proof above, we assume thatqi takes the form in (17), wheres0 = 2.
With this choice,5Xpi(X) changes very fast from 1 to 0 near the saddle point as
gi(X) −→ 0, making it difficult for LSODEto find a suitable step size in order
to reach the saddle point. To let the gradient change smoothly, we sets0 = 2.5
or s0 = 3.0, and sets1 to satisfyqi(gi(X)) = 2 whengi(X) = 1. Thus,s1 =
− loge[s0/2− 1].

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 9

Note that (16) is similar to (7) in the sense that both use the max function. The
main difference is that (16) avoids the case in (7) in which inequality constraint
gi(X(t)) 6 0 is satisfied at timet butgi(X(t)) also appears in the Lagrangian func-
tion. Whengi(X(t)) is satisfied, it is meaningful to minimizef (X) independent of
the value ofgi(X(t)).

2.3. CONVERGENCE PROPERTIES OF THE MAXQ METHOD

There are two types of saddle pointsX∗ as shown in Figure 3.When saddle point
X∗ is within a feasible region, i.e.,gi(X∗) < 0 (see Figure 3a),pi(X∗) = 0, and
5Xf (X∗) = 0. This means thatX∗, an equilibrium point of dynamic system (18),
(19), is given by

d

dt
X(t) = 0 and

d

dt
µi(t) = 0 i = 1, . . . , k (21)

Thus, the trajectory controlled by (18), (19) will converge to this saddle pointX∗.
When the saddle pointX∗ is on the boundary of the feasible region shown in

Figure 3b, it will be asymptotically approached from outside the feasible region
(right side of Figure 3b). In order to prove this, we only need to show thatX∗ is
asymptotically a regular point of the constraintspi(X) = 0 [14] because inequality
constraintgi(X) 6 0 has been transformed into an equivalent equality constraint
pi(X) = 0.

BecauseX∗ is on the boundary of the feasible region,gi(X∗) = 0, and so
pi(X

∗) = 0. In addition, whenX −→ X∗, gi(X) −→ gi(X
∗) = 0, and

qi(gi(X)) −→ qi(gi(X
∗)) = 1. By taking limits, we obtain

lim
X→X∗ q

′
i (gi(X))pi(X) loge max(0, gi(X)) = 0 (22)

lim
X→X∗

qi(gi(X))[max(0, gi(X))]qi(gi(X))−1 = 1 (23)

Therefore, limX→X∗ 5Xpi(X) = 5Xgi(X∗) according to (20), which means that
asymptotically regular pointX∗ of pi(X) is the same as that of the original con-

X Xfeasible region feasible region

f(X)

f(X)

X X* *

(a) (b)

Figure 3. Relationship between saddle point and feasible region. (a) The saddle point is within
the feasible region; (b) the saddle point is on the boundary of feasible region.

10 B.W. WAH AND T. WANG

straint gi(X) 6 0. Since a saddle point, if it exists, must be a regular point of
gi(X) [14], X∗ can be asymptotically reached by the dynamic system (18), (19).

2.4. DYNAMIC CONVERSION OF INEQUALITY CONSTRAINTS TO EQUALITY

ONES IN MAXQ

As discussed above, if solutionX∗ is on the boundary of a feasible region, i.e.,
when somegi(X∗) equals zero, then dynamic system (18), (19) cannot reach this
point exactly. This point can only be approached with a precision proportional to
the convergence condition of theLSODEsolver. However, this may take a long time
even ifqi is changed dynamically. This happens because the violation of constraint
gi(X

∗) is small when the current pointX(t) is close to the boundaryX∗ (from
the right side of Figure 3b). Consequently, the increment of the corresponding
Lagrange multiplierµi will be small, leading to slow progress towards the saddle
point.

Suppose we know that somegj (X∗) = 0 for a given solution. In this case,
faster convergence can be achieved if we considergj (X) as an equality constraint,
gj (X) = 0, rather than an inequality constraint,gj (X) 6 0. The difficulty, how-
ever, is that it is impossible to know in advance which inequality constraints
gj (X) 6 0 will satisfy the boundary condition (i.e.,gj (X) = 0) for a solution
on the boundary.

We can utilize the property that, whenX(t) is very close to the boundary with
respect to a particular inequality constraint (gj (X(t)) is positive and close to zero)
and convergence of this constraint is slow, it is very likely that the saddle point is
on the boundary with respect to this constraint. At this point, we can dynamically
convert inequality constraintgj (X(t)) 6 0 into equality constraintgj (X(t)) = 0
to improve the convergence rate.

Since we solve the dynamic system usingLSODE, letX andX0 be the points
of two successive iterations. The conversion of inequality constraintgj (X) 6 0
occurs when the following two conditions are satisfied.
• The dynamic system converges to some pointX when it changes very little

for a window of 20 iterations. We define the current point to have slow
convergence when #{maxi |xi − x0i|/maxj |xj | < δ} > 10 (δ = 10−4 in
our experiments).

• The dynamic system converges to the boundary whengj (X) is very close to
zero; that is, 0< gj(X) < ε (ε = 10−4 in our experiments).

Both conditions are very important. Without the first condition, trajectoryX(t) that
occasionally passes the boundary ofgj (X(t)) would erroneously cause some in-
equality constraints to be converted. It makes sure that the trajectory really changes
very little during a period of time. The second condition guarantees that only those
inequality constraints very close to the boundary can be converted into equality
ones. Note that dynamic conversion can happen to many inequality constraints at
the same time as long as they satisfy these two conditions.

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 11

If dynamic conversion is performed on inequality constraintgj (X) 6 0, then
the terrain of Lagrangian functionLq(X,µ) will be changed and be totally differ-
ent. To maintain the search direction in the original-variable spaceX, we have to
adjust Lagrange multiplierµj . Let the current point just before the conversion be
(X,µj). The Lagrangian term associated with inequality constraintgj (X) 6 0 is

Lj(X,µj) = µj [max(0, gj (X))]qj + [max(0, gj (X))]2qj
= µjgqjj (X)+ g2qj

j (X)

according to the conversion conditions. The derivative ofLj(X,µj) with respect
toX andµj are

5XLj(X,µj) =
=
[
µjg

qj−1
j (X)+ 2g

2qj−1
j (X)

] [
qj + q ′j (X)gj (X) loge gj (X)

]5X gj (X)
5µjLj (X,µj) = gqjj (X)

Let (X, µ̂j) be the point after the conversion. This means that we apply equality
constraintgj (X) = 0 at the current point(X(t), µ̂j) where inequality constraint
gj (X) 6 0 was before. The Lagrangian term related togj (X) = 0 is

L̂j (X, µ̂j) = µ̂j gj (X)+ g2
j (X)

and the derivative of̂Lj(X, µ̂j) with respect toX andµ̂j are

5XL̂j (X, µ̂j) = (µ̂j + 2gj (X))5X gj (X)
5µ̂j L̂j (X, µ̂j) = gj (X)

Since the control parameterqj is close to 1, the search direction in the Lagrange-
multiplier space changes very little, meaning that5µjLj (X,µj) ' 5µ̂j L̂j (X, µ̂j),
independent of the valueµj . To retain the search direction in the original-variable
spaceX, we set5XLj(X,µj) = 5XL̂j (X, µ̂j) and get

µ̂j =
[
µjg

qj−1
j (X)+ 2g

2qj−1
j (X)

] [
qj + q ′j (X)gj (X) loge gj (X)

]− 2gj (X)

(24)

2.5. ILLUSTRATION OF THE MAXQ METHOD

As is in the slack-variable method, we introduce an additional weightw into the
original augmented Lagrangian function in theMaxQmethod.

Lm(X, λ,µ) = w f (x)+ λT h(X)+ ||h(X)||22+ µT p(X)+ ||p(X)||22 (25)

12 B.W. WAH AND T. WANG

wherew > 0 is a weight on the objective,λ is the Lagrange multiplier for equality
constraints,µ, the Lagrange multiplier for inequality constraints, andp(X) =
[p1(X), p2(X), . . . , pk(X)]T .

To show howMaxQavoids divergence and oscillations that occur in the slack-
variable method, we consider the same Problem 2.3 defined in (12) [6]. The starting
point is at the middle of the search space, the same as that used in the slack-variable
method. Three cases were tested: no scaling, scaling the objective by 10 (i.e.,
w = 1/10), and scaling the objective by 15. All of them converge with similar
behavior. Figure 4 shows the second case. Obviously,MaxQ has smoother and
better convergence property as compared to the slack-variable method.

The solution to Problem 2.3 is on the boundary of the feasible region as shown
in Figure 3b. Since all the Lagrange multipliers are zero initially, only objective
function f (X) takes effect in the Lagrangian function, causing the trajectory to
move away from the feasible region. The Lagrange multipliers then increase, push-
ing the trajectory back towards the boundary. Hence, the objective-function value
increases, and the value of the maximum violation decreases (see Figure 4).

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O
bj

ec
tiv

e

Iterations (*1000)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure 4. The objective and maximum violation converge smoothly usingMaxQfor Problem
2.3 defined in (12) [6] (w = 1

10). The number of iterations required is large and is over 94,000.

Note that there is a gap between our current implementation ofMaxQ and its
theoretic result, in the sense that the analytic proof requiress0 = 2 in (17) but
LSODEusess0 = 2.5 or 3.0. This gap causes theMaxQmethod to converge slowly
sometimes, like the case shown in Figure 4 that requires over 94,000 iterations. In
this example,MaxQreduces the constraint violation very quickly in the beginning,
but slowly afterwards.

This problem can be solved by two approaches. The first is to use another
differential-equation solver that is insensitive to quick changes of gradients, mak-
ing the analytic result hold during the search. This will be investigated in the future.
The second is to adaptively adjust the relative weightw between the objective and
the constraints during the search. As soon as we detect divergence, oscillations, or
slow convergence,w is adjusted accordingly. When we apply this strategy in the
slack-variable method [34], it is able to eliminate divergence, reduce oscillations,

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 13

and greatly speed up convergence. We discuss the application of this strategy in the
MaxQmethod in the next section.

3. Adaptive Lagrange-multiplier method

In the last section, we have studied two methods to handle inequality constraints.
We have shown that the slack-variable method is sensitive to the relative weights
between the objective and the constraints, and that its implementation may diverge,
oscillate or converge. Although theMaxQmethod does not oscillate and is not sen-
sitive to the relative weights, careful weighting may help accelerate its convergence
speed. The proper weights for fast convergence, however, are problem-dependent
and are impossible to choose in advance. In this section, we describe a strategy
for MaxQ to dynamically adapt the weights based on the behavior of the search
progress. This is based on the strategy we have developed for the slack-variable
method [34].

3.1. DYNAMIC WEIGHT-ADAPTATION STRATEGY

Lagrangian methods rely on two counteracting forces to resolve constraints and
find high-quality solutions. When all the constraints are satisfied, Lagrangian meth-
ods rely on gradient descents in the objective space to find local minima. On the
other hand, when any of the constraints are not satisfied, Lagrangian methods rely
on gradient ascents in the Lagrange-multiplier space in order to increase the penal-
ties on unsatisfied constraints and to force the constraints into satisfaction. The
balance between gradient descents and gradient ascents depends on the magnitudes
of Lagrange multipliersλ andµ, which play a role in balancing objectivef (X)
and constraintsh(X) andg(X) and in controlling indirectly the convergence speed
and solution quality of the Lagrangian method. At a saddle point, the forces due to
descent and ascent reach a balance through appropriate Lagrange-multiplier values.

Combining augmented Lagrangian functions (8) and (25), we get a general
augmented Lagrangian function as follows:

Lb(X, λ,µ) = w f (x)+ λT h(X)+ ||h(X)||22+ Lineq(µ,X) (26)

wherew is the relative weight,λ is the Lagrange multiplier for equality constraints,
andµ for inequality constraints.Lineq(µ,X) depends on the way to deal with
inequality constraints. It can be the slack-variable method orMaxQ. Starting from
an initial point(X(0), λ(0), µ(0)), the dynamic system to find saddle points is

d

dt
X(t) = −5XLb(X(t), λ(t), µ(t)) (27)

d

dt
λ(t) = 5λLb(X(t), λ(t), µ(t)) (28)

d

dt
µ(t) = 5µLb(X(t), λ(t), µ(t)) (29)

14 B.W. WAH AND T. WANG

1. Set control parameters:
time interval4t
initial weightw(t = 0)
maximum number of iterationsimax

2. Set window sizeNw = 100 or 10
3.j := 1 /* j is the iteration number */
4.while j 6 imax and stopping condition is not satisfieddo
5. advance search trajectory by4t in LSODEto get to(Xj , λj , µj)
6. if trajectory divergesthen

reducew; restart the algorithm by going to Step 2
end if

7. record useful information for calculating performance metrics
8. if ((j mod Nw) == 0) then

/* Test whetherw should be modified at the end of a window */
9. compute performance metrics based on data collected

10. changew when the conditions are satisfied
end if

11.end while

Figure 5. Framework of the dynamic weight-adaptation algorithm.

Figure 5 outlines the algorithm. Its basic idea is to first estimate the initial
weightw(t = 0) (Step 1), measure the performance metrics of the search trajectory
(X(t), λ(t), µ(t)) periodically, and adaptw(t) to improve convergence time or
solution quality.

Let tmax be the total (logical) time for the search, andtmax be divided into small
units of time4t so that the maximum number of iterationsimax= tmax/4t . Further,
assume a stopping condition if the search were to stop beforetmax (Step 4). Given
a starting pointX(t = 0), we set the initial values of the Lagrange multipliers to
be zero; i.e.,λ(t = 0) = µ(t = 0) = 0. Let (Xi, λi, µi) be the point of theith
iteration, andvmax(i) be its maximum violation defined in (14).

To monitor the progress of the search trajectory, we divide time into non-over-
lapping windows of sizeNw iterations each (Step 2). In each window, we compute
some metrics to measure the progress of the search relative to that of previous
windows. For theqth window (q = 1,2, . . .), we calculate the average value of
vmax(t) using (14) over all the iterations in this window,

v̄q = 1

Nw

mNw∑
t=(q−1)Nw+1

vmax(t) (30)

During the search, we employLSODEto solve dynamic system (27)–(29), and
advance the trajectory by time interval4t in each iteration in order to arrive at
point (Xj , λj , µj) (Step 5).

At this point, we test whether the trajectory diverges or not (Step 6). Divergence
happens when the maximum violationvmax(t) is larger than an extremely large

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 15

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O
bj

ec
tiv

e

Iterations (*1000)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure 6. The objective and maximum violation converge after 756 iterations forMaxQusing
dynamic weight adaptation (initialw = 1

10).

value (e.g. 1020). If it happens, we reducew by a large amount, sayw ⇐H w/10,
and restart the algorithm. In each iteration, we also record some statistics such as
vmax(t), which will be used to calculate the performance metrics for each window
(Step 7).

At the end of each window or everyNw iterations (Step 8), we decide whether
to updatew based on the performance metrics (30) (Step 9). In our current im-
plementation, we use the average value of maximum violationvmax(t). In general,
other application-specific metrics can also be used. Based on these measurements,
we adjustw accordingly (Step 10).

As explained in Section 2.5, the major problem withMaxQ sometimes is its
slow convergence, which can be measured by how fast the maximum violation
decreases. Therefore, we monitor the reduction ofv̄q , the average value of the
maximum violation. If it is found to decrease slowly, i.e.,v̄q−1− v̄q 6 βv̄q−1 where
β is a threshold (e.g.β = 10%), we will reduce weightw by half (w ⇐H w/2). Its
effect is to put more weight on the constraints, thus pushing the trajectory quickly
to a feasible region. Note that when comparing the values between two successive
windowsq−1 andq, both must use the same weightw; otherwise, the comparison
is not meaningful because the terrain may be different. Hence, after adaptingw, we
should wait at least two windows before changing it again.

3.2. ILLUSTRATION OF THE WEIGHT-ADAPTATION STRATEGY FOR MAXQ

To use the dynamic weight-adaptation method, we set time interval4t = 1 for
LSODE, and window sizeNw = 10. Corresponding to Figure 4, we start from the
initial weight w(t = 0) = 1/10 and the same starting point(X(0), λ(0), µ(0)).
Figure 6 shows the resulting search profile, in which the search converges using
only 756 iterations, which is significantly better than the 94,000 iterations without
weight adaptation.

It is important to note that solution quality is the same as that in Figure 4, and
both obtain the objective value−11.25 when the search converges.

16 B.W. WAH AND T. WANG

The remaining issue in our algorithm is to choose a good starting value for
w(t = 0). If w(0) is too large, then it is difficult for the constraints to be satisfied,
resulting in slow convergence forMaxQ. If w(0) is too small, then the objective
is under-weighted, and the search may converge to a worse saddle point. After
studying many benchmark problems [6], we found that if we set the starting points
of the search to be the ones given by [6] andw(0) = 1, then both the slack-
variable andMaxQmethods work well. This suggests us to start withw(0) = 1 in
our experiments. A small number of the problems may still need further adaptation
of w during the search.

4. Global search for saddle points

The Lagrangian method presented in the last two sections only looks for a single
saddle point, behaving like a local search. To find multiple saddle points,global-
search methodsare needed to bring the search out of local saddle points. In this
section, we present our global search strategy, followed by a description of our
trace-based search method. We first describe some previous work on solving un-
constrained nonlinear optimization problems since the dynamic system for solving
a Lagrangian formulation can be treated as an unconstrained nonlinear optimiza-
tion problem.

4.1. PREVIOUS WORK ON UNCONSTRAINED NONLINEAR OPTIMIZATION

Unconstrained nonlinear optimization, in general, is multi-modal with the fol-
lowing features. (a) Flat regions may mislead any gradient-based methods. (b)
Gradients may differ by many orders of magnitude, making it difficult to use gradi-
ents in any gradient-based search method. (c) The existence of many local minima
may trap some search methods, leading to suboptimal solutions. Based on these
observations,global search methodsshould be able to use gradient information to
descend into local minima, and be able to escape from local minima once it gets
there.

Search methods can be classified into local and global. Local search algorithms,
such as gradient-descent and Newton’s methods, find local minima efficiently and
work best in uni-modal problems. Global-search algorithms, in contrast, employ
some heuristic or systematic strategies to look for global minima and do not stop
after finding a local minimum [14, 18, 29]. Note that both gradients and Hessians
can be used in local- and global-search methods [29].

Local-search algorithms have difficulty when the surface is flat where gradients
are close to zero, or when gradients can be in a large range, or when the surface
is very rugged. If gradients vary greatly, a search may progress too slowly when
gradients are small or may over-shoot when gradients are large. If the function
surface is rugged, a local search from a randomly chosen starting point will most
likely converge to a local minimum that is near the starting point and results in a

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 17

solution worse than the global minimum. Moreover, these algorithms may require
some properly chosen parameters as incorrectly chosen parameters may cause slow
or unstable convergence.

To avoid getting stuck in local minima in local-search methods, many global-
search methods have been developed. These methods rely on local search to deter-
mine local minima, but focus on bringing the search out of local minima when it
gets there.

Few deterministic methods have been developed, most of which apply deter-
ministic heuristics to bring a search out of a local minimum (such as those in
covering and generalized descent methods) [10, 24, 29]. These deterministic meth-
ods do not work well when the search space is too large to be covered adequately [4,
9, 29]. Trajectory methods rely on an internal force (such as the momentum of the
trajectory) to continue to move the trajectory once it gets to a local minimum. They
do not work well when gradients are steep and the search space is rugged.

Probabilistic methods, on the other hand, rely on probability to make decisions.
The simplest probabilistic algorithm uses restarts to bring a search out of a local
minimum when little improvement can be made locally [20, 35, 36]. More ad-
vanced methods rely on probability to indicate whether the search should ascend
from a local minimum. Simulated annealing is one of these methods that accepts
up-hill movements [2, 3, 13, 21, 22, 30] based on some probability. Other stochastic
methods rely on probability to decide which intermediate points to be interpolated
as new starting points, such as random recombinations and mutations in evolution-
ary algorithms [8]. All these algorithms are weak in either their local search [14]
or their global search [9, 23, 24, 29]. For instance, gradient information useful in
local search is not well used in simulated annealing and evolutionary algorithms.
In contrast, gradient-descent algorithms with multi-start are weak in their global
search.

Other probabilistic methods utilize sampling to determine the terrain and to
decide where to search [16, 24, 29, 31]. Such strategies may fail when the terrain is
very rugged or when the search gets trapped in a deep but suboptimal basin. This
happens in clustering methods whose performance is similar to that of random
restarts when the terrain is rugged [24, 28]. Bayesian methods also do not work
well. Most samples that they collect randomly from the error surface are close to
the average error value, and these samples are inadequate to model the behavior
at minimal points [17, 27, 29, 31]. In addition, they are computationally expensive
and are usually not applicable for problems with over twenty variables.

4.2. novel: A TRACE-BASED SEARCH METHOD

To find saddle points of (26), Equation (27) performs descents in the original-
variable space to locate local minima of the objective function when the constraints
are satisfied, whereas (28), (29) perform ascents in the Lagrange-multiplier space
when the constraints are violated.

18 B.W. WAH AND T. WANG

Trace function

Trajectory 1

Trajectory 2

Trajectory 3

o

o

o
o

t=0

o

o

Trace

Trace direction

Moving
direction

Gradient direction

Trajectory

Figure 7. Novelhas two phases: global search and local refinement. In the global-search
phase, the trajectory combines a Lagrangian search and the pull exerted by the moving trace. In
the local-search phase, the trajectory is sampled to collect starting points for pure Lagrangian
searches.

We are interested to move the trajectory from one saddle point in a feasible
space to another, without having to restart the search. To do so, we add anexternal
force to pull the search out of a saddle point in the original-variable space continu-
ously and escapes from it without restarts [26, 32]. It has three features: exploring
the solution space, locating promising regions, and finding saddle points. In explor-
ing the solution space, the search is guided by a continuous terrain-independent
trace that does not get trapped by local saddle points. This trace is usually an ape-
riodic continuous function that runs in a bounded space. It continues to move over
the search space independent of local gradients. In locating promising regions, our
trace-based method uses local Lagrangian search to attract the search to a saddle
point but relies on the trace to pull it out once little improvement can be found.
Finally, our trace-based method selects one initial point from each promising local
region and uses them as initial points for a Lagrangian search to find saddle points.

In exploring the search space, the trace plays an important role in discovering
regions with new local saddle points. Atrace is a continuous aperiodic function
of (logical) time that generates atrajectory. At time t = 0 both the trace and the
trajectory start at the same point. As the trace moves from pointX1 to pointX2, the
trajectory moves from pointY1 to Y2, whereY2 is a function of the local gradient at
Y1 and the distance betweenX1 andY1 (see Figure 7). These two forces (descent
into a local saddle point and attraction exerted by the trace) form a composite vector
that represents the route taken by the trajectory.

When dealing with constrained problems formulated by Lagrangian functions,
there are two different sets of variables, the original variablesX and the Lagrange
multipliersλ andµ. Intuitively, there is no need of a trace in the Lagrangian space
because the Lagrange multipliers are responsible to bring the trajectory to a feasible
region and does not involve finding local minima. As the trace pulls the search out
of a local saddle point and enters an infeasible region, the corresponding Lagrange

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 19

multipliers will be automatically increased based on the dynamic system, and then
push the trajectory back into the feasible region. In this sense, the Lagrange mul-
tipliers are passive since they change with the constraints. If one also uses a trace
function in the Lagrangian space, the force imposed by the trace and that by the
Lagrange multipliers may contradict. In short, the trace does not affect the search
in the Lagrange-multiplier space defined by (28) and (29). This strategy corrects a
problem in our original trace-based strategy presented in [32] that uses a trace in
the Lagrangian space.

The overall dynamic system for nonlinear constrained optimization is as fol-
lows.

d

dt
X(t) = −µg5XLb(X(t), λ(t), µ(t)) − µt ∗ (X(t)− TX(t)) (31)

d

dt
λ(t) = 5λLb(X(t), λ(t), µ(t)) (32)

d

dt
µ(t) = 5µLb(X(t), λ(t), µ(t)) (33)

whereµg andµt are constants controlling the relative weights between local search
and global exploration.

Note that our proposed method is a trajectory-based method, but differs from
existing trajectory-based methods that rely on internal forces to modify the trajec-
tory. Instead, it uses anexternalforce (a traveling problem-independent trace) to
pull the trajectory out of local minima.

The design of a good trace functionTX(t) is very important because our method
relies on it to travel through the solution space. Four criteria have been considered
up to now. First, the trace should be aperiodic so that it does not return to the same
starting points and regenerates possibly the same trajectory. Second, the trace needs
to be continuous in order to be differentiable. This allows the generated trajectory
to follow the terrain in a continuous manner without restarting from new starting
points. Third, the trace should be bounded so that it will not explore unwanted
regions. Last, the trace should be designed to travel from coarse to fine so that it
examines the search space in greater details when more time is allowed.

Since an analytic approach to design a good trace function is intractable, we
have studied some heuristic functions and fine-tuned them [25]. In the following,
we summarize our observations.
• Our trace-based method is a fine-level global search in the sense that the

search space covered by a trace grows linearly with the length of the trace
(and, therefore, the time to complete the algorithm). However, a search space
grows exponentially with respect to the number of dimensions. Hence, a
trace-based method does not give good coverage when the search space is
large. To overcome this limitation, the method may need to be combined with
other coarse-level global searches, such as simulated annealing and genetic
algorithms. This hybrid approach does not work well for constrained op-
timization problems because existing coarse-level global-search algorithms

20 B.W. WAH AND T. WANG

generally have difficulty in satisfying constraints. Starting from points where
constraints are violated usually do not lead to good feasible solutions.

• Our trace-based method relies on the distance between the current position
of the trace and that of the trajectory to pull the trajectory out of local saddle
points. When local gradients are very large, the external force due to the
trace may not be enough to pull the trajectory out of local saddle points. To
address this problem, we have developed a dynamic variable scaling method
that scales a variable dimension when the gradient of the trajectory in this
dimension exceeds a threshold (e.g. 102). Scaling not only reduces the local
gradient of the trajectory but also increases the distance between the trace
and the trajectory, thereby providing adequate force to pull the trajectory
out of local saddle points. By controlling the scaling factor, we are able to
explore a larger search space.

Based on substantial experiments, we have designed an aperiodic trace function
as follows.

Ti(t) = ρ sin

[
2π

(
t

2

)0.95+0.45i−1/n

+ 2π
i − 1

n

]
(34)

wherei represents theith dimension,ρ is a coefficient specifying the range, andn
is the dimension of the original variable spaceX.

We have described our trace-based method using one trace function. In general,
the method can be cascaded, using the output trajectory of one stage as the trace
of the next stage. This bootstrapping allows trajectories in later stages to go deeper
into a local region, thereby providing better starting points for the local-search
phase. In Figure 7, we have shown three stages of the global-search phase, each
of which outputs a trajectory based on (31). In the first stage of the global search,
the user-defined trace functionTX(t) leads the trajectory to form Trajectory 1 in
Figure 7. In the second and third stages of the global search, the trace function
TX(t) is the trajectory from the previous stage. Using the trajectories output from
the three stages, we identify a set of promising starting points and perform local
Lagrangian searches from them. The final result is the best solution among all these
local searches. In our implementation, when an output trajectory is a collection of
discrete sample points of a continuous trajectory, interpolations are performed to
form a continuous trace for the next stage.

Generally, weightsµg andµt can have different values in different global stages.
For example,µt can be set to have large values relative toµg in the first stage so
that global search is emphasized. In later stages,µg can have larger values, and the
search is more focused on a local region. In the simplest case,µg andµt are set to
constants and have the same values in all the stages. In our experiments, we have
setµga = 1 and µt = 20 for all three stages.

We have implemented ourMaxQ, adaptive weighting, and trace-based search
in a prototypeNovel(Nonlinear Optimization Via External Lead) that extends our
previous work in trace-based search [26, 32]. The prototype can solve both nonlin-

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 21

ear constrained as well as unconstrained optimization problems. It has been applied
to solve design problems in signal processing [33], neural-network learning [26],
and benchmark problems in operations research. Results on the latter are presented
in the next section.

5. Experimental results

In this section we describe our experimental results on some existing benchmarks
[6]. These benchmarks are challenging because they model practical applications
that have been studied extensively in the past. As a result, improvements are gen-
erally difficult.

We use a common set of parameters, including step size and trace function, to
solve all the problems. The reason for not tuning the parameters is to avoid any
bias, as good solutions can always be obtained by sufficient tuning. We further
set the starting points ofNovelas those suggested in the benchmark set. The only
exception is the problem-specific search range of the trace, which we set manually
based on the solutions reported in the benchmarks. In practice, this is reasonable as
search ranges are generally known. In cases that the search range is not available,
we use trial and error, starting from a small range and gradually increasing it until
no improvement in solutions can be found.

In the global-search phase ofNovel, we used three stages that produce three
trajectories (see Figure 7). Usingµg = µt = 1.0, we chose 100 starting points
from each trajectory based on their Lagrangian values for Lagrangian searches.
After 300 Lagrangian searches, we report the best solution.

Table 1 summarizes the results found byNovel. Column 1 lists the problem
identifications that appear in the benchmark collection [6]. Column 2 shows the
problem-dependent search range that the trace covers. Column 3 shows the best
known solutions reported in [6], and Column 4, the solutions reported by Ep-
perly [5]. Here, symbol ‘−’ means that the method is unable to find a solution for
the corresponding problem. Column 5 shows the results obtained byNovelusing
the slack-variable method where the dynamic weight-adaptation strategy described
in Section 3 is used. Without using adaptive weights, more than half of these prob-
lems cannot be solved due to divergence and oscillations described in Section 2.1.
The last column shows the results obtained byNovelusingMaxQ. Results in bold
font are improved byNovelover the best known results, with improvements of up
to 10%. Our results indicate thatNovelis robust in discovering new regions and in
escaping from local traps.

6. Conclusions

In this paper, we have studied three strategies to improve Lagrangian searches
for solving nonlinear constrained optimization problems. First, we have studied
a new method calledMaxQ to convert inequality constraints into equality con-

22 B.W. WAH AND T. WANG

Table 1. Results on a collection of constrained optimization benchmarks [6] comparing
NovelusingMaxQ, Novelusing the slack-variable method, and Epperly’s method [5]. Search
times are in CPU seconds on a Sun SS 10/51. Improved solutions found byMaxQ are
indicated in bold font. Symbol ‘−’ means that the method was not able to find a solution for
the corresponding problem.

Problem NovelSearch Best Known Epperly’s Slack Variable MaxQ

ID Range Solutions Solutions Solutions Solutions

2.1 1.0 −17.00 −17.00 −17.00 −17.00

2.2 10.0 −213.00 −213.00 −213.00 −213.00

2.3 10.0 −15.00 −15.00 −15.00 −15.00

2.4 10.0 −11.00 −11.00 −11.00 −11.00

2.5 1.0 −268.00 −268.00 −268.00 −268.00

2.6 1.0 −39.00 −39.00 −39.00 −39.00

2.7(1) 40.0 −394.75 −394.75 −394.75 −394.75

2.7(2) 40.0 −884.75 −884.75 −884.75 −884.75

2.7(3) 40.0 −8695.00 −8695.00 −8695.00 −8695.00

2.7(4) 40.0 −754.75 −754.75 −754.75 −754.75

2.7(5) 40.0 −4150.40 −4150.40 −4150.40 −4150.40

2.8 25.0 15990.00 15990.00 15639.00 15639.00

3.1 5000.0 7049.25 − 7049.25 7049.25

3.2 50.0 −30665.50 −30665.50 −30665.50 −30665.50

3.3 10.0 −310.00 −310.00 −310.00 −310.00

3.4 5.0 −4.00 −4.00 −4.00 −4.00

4.3 5.0 −4.51 −4.51 −4.51 −4.51

4.4 5.0 −2.217 −2.217 −2.217 −2.217

4.5 5.0 −11.96 −13.40 −13.40 −13.40

4.6 5.0 −5.51 −5.51 −5.51 −5.51

4.7 5.0 −16.74 −16.74 −16.75 −16.75

5.2 50.0 1.567 − 1.567 1.567

5.4 50.0 1.86 − 1.86 1.86

6.2 100.0 400.00 400.00 400.00 400.00

6.3 100.0 600.00 600.00 600.00 600.00

6.4 100.0 750.00 750.00 750.00 750.00

7.2 100.0 56825.00 − 56825.00 56825.00

7.3 150.0 46266.00 − 46266.00 44903.00

7.4 150.0 35920.00 − 35920.00 35920.00

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 23

straints. A Lagrangian search using the new constraints approaches saddle points
on boundaries of feasible regions without oscillations. This overcomes the prob-
lems of oscillations and divergence when inequality constraints are converted by
adding slack variables. Second, we have developed a method to adaptively adjust
the relative weights between the objective and the constraints in a Lagrangian for-
mulation. We show that adaptive weighting can improve the convergence speed
of Lagrangian methods, without affecting the solution quality. Finally, we have ap-
plied a trace-based search to bring a trajectory from one saddle point into another in
a continuous fashion. Our method generates information-bearing trajectories in its
global search based on a user-defined trace function, and samples these trajectories
for good starting points in its local search. This overcomes the problem of using
random restarts when the trajectory is already in the vicinity of good saddle points.
We have appliedMaxQ, adaptive weighting, and trace-based search inNovel[26,
32], a global optimization system we have developed earlier to solve constrained
as well as unconstrained optimization problems.

We have tested many benchmark problems derived from manufacturing, com-
puted aided design, and other engineering applications and have comparedMaxQ
to the method based on slack variables [14] and that of Epperly [5]. Our results
show thatMaxQ is more robust in convergence and has found solutions that are
either better than or the same as existing solutions. Our future work in this area
will be on finding better trace functions, parallelizing the execution on massively
parallel computers, and studying other challenging applications in neural-network
learning and signal processing.

Acknowledgments

Research supported by National Science Foundation Grants MIP 92-18715 and
MIP 96-32316, and by the Computational Science and Engineering Program, Uni-
versity of Illinois, Urbana-Champaign.

References

1. Ben-Tal, A., Eiger, G. and Gershovitz, V. (1994), Global minimization by reducing the duality
gap,Mathematical Programming63: 193–212.

2. Bohachevsky, I.O., Johnson, M.E. and Stein, M.L. (1986), Generalized simulated annealing for
function optimization,Technometrics28: 209–217.

3. Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987), Minimizing multimodal functions
of continuous variables with the simulated annealing algorithm,ACM Trans. Math. Software
13: 2–280.

4. Diener, I. and Schaback, R. (1990), An extended continuous Newton method,Journal of
Optimization Theory and Applications67(1): 57–77.

5. Epperly, T. (1995),Global Optimization of Nonconvex Nonlinear Programs Using Parallel
Branch and Bound. Ph.D. Thesis, University of Wisconsin, Madison.

6. Floudas, C.A. and Pardalos, P.M. (1990),A Collection of Test Problems for Constrained Global
Optimization Algorithms, vol. 455 ofLecture Notes in Computer Science. Springer Verlag.

24 B.W. WAH AND T. WANG

7. Floudas, C.A. and Pardalos, P.M. eds. (1992),Recent Advances in Global Optimization.
Princeton University Press.

8. Fogel, D.B. (1994), An introduction to simulated evolutionary optimization,IEEE Trans.
Neural Networks5(1): 3–14.

9. Hansen, E.R. (1992),Global Optimization Using Interval Analysis. Marcel Dekker, New York.
10. Horst, R. and Tuy, H. (1993),Global Optimization: Deterministic Approaches. Springer Verlag.
11. Ingber, L. (1995),Adaptive Simulated Annealing (ASA). Lester Ingber Research.
12. Jones, A.E.W. and Forbes, G.W. (1995), An adaptive simulated annealing algorithm for global

optimization over continuous variables,Journal of Optimization Theory and Applications6:
1–37.

13. Lucidi, S. and Piccioni, M. (1989), Random tunneling by means of acceptance–rejection
sampling for global optimization,Journal of Optimization Theory and Applications62:
255–277.

14. Luenberger, D.G. (1984),Linear and Nonlinear Programming. Addison-Wesley Publishing
Company

15. Michalewicz, Z. (1994),Genetic Algorithms + Data Structure = Evolution Programs. Springer
Verlag.

16. Mockus, J. (1989),Bayesian Approach to Global Optimization. Kluwer Academic Publishers,
Dordrecht–Boston–London.

17. Mockus, J. (1994), Application of bayesian approach to numerical methods of global and
stochastic optimization,Journal of Global Optimization4: 347–365.

18. Pardalos, P.M. (1993),Complexity in Numerical Optimization. World Scientific, Singapore and
River Edge, N.J.

19. Pardalos, P.M. and Rosen, J.B. (1987),Constrained Global Optimization: Algorithms and
Applications, vol. 268 ofLecture Notes in Computer Science. Springer Verlag.

20. Patel, N.R., Smith, R.L. and Zabinsky, Z.B. (1988), Pure adaptive search in Monte Carlo
optimization,Mathematical Programming43: 317–328.

21. Piccioni, M. (1987), A combined multistart-annealing algorithm for continuous global opti-
mization. Technical Report 87–45, Systems and Research Center, The University of Maryland,
College Park, MD.

22. Romeijn, H.E. and Smith, R.L. (1994), Simulated annealing for constrained global optimiza-
tion, Journal of Global Optimization5(2): 101–126.

23. Sarma, M.S. (1990), On the convergence of the Baba and Dorea random optimization methods,
Journal of Optimization Theory and Applications66: 337–343.

24. Schoen, F. (1991), Stochastic techniques for global optimization: A survey on recent advances,
Journal of Global Optimization1(3): 207–228.

25. Shang, Y. (1997),Global Search Methods for Solving Nonlinear Optimization Problems. Ph.D.
Thesis, Department of Computer Science, University of Illinois, Urbana, IL.

26. Shang, Y. and Wah, B.W. (1996), Global optimization for neural network training,IEEE
Computer29: 45–54.

27. Stuckman, B.E. (1988), A global search method for optimizing nonlinear systems,IEEE Trans.
on Systems, Man, and Cybernetics18(6): 965–977.

28. Törn, A. and Viitanen, S. (1992), Topographical global optimization, in C.A. Floudas and P.M.
Pardalos (eds.),Recent Advances in Global Optimization, pp. 385–398. Princeton University
Press.

29. Törn, A. and Žilinskas, (1989)Global Optimization. Springer Verlag.
30. Vanderbilt, D. and Louie, S.G. (1984), A Monte Carlo simulated annealing approach to

optimization over continuous variables,Journal of Computational Physics56: 259–271.
31. Žilinskas, A. (1992), A review of statistical models for global optimization,Journal of Global

Optimization2: 145–153.

EFFICIENT AND ADAPTIVE LAGRANGE-MULTIPLIER METHODS 25

32. Wah, B.W. and Chang, Y.-J. (1997), Trace-based methods for solving nonlinear global
optimization problems,Journal of Global Optimization10(2): 107–141.

33. Wah, B.W., Shang, Y., Wang, T. and Yu, T. (1997), Global optimization of QMF filter-bank-
design using NOVEL, inProc. Int’l Conf. on Acoustics, Speech and Signal Processing, vol. 3,
pp. 2081–2084. IEEE, April 1997.

34. Wah, B.W., Wang, T., Shang, Y. and Wu, Z. (1997), Improving the performance of weighted
Lagrange-multiple methods for constrained nonlinear optimization. InProc. 9th Int’l Conf. on
Tools for Artificial Intelligence, pages 224–231. IEEE, November 1997.

35. Zabinsky, Z.B. and Smith R.L. (1992), Pure adaptive search in global optimization,Mathemat-
ical Programming53: 323–338.

36. Zabinsky, Z.B. et al. (1993), Improving hit-and-run for global optimization,Journal of Global
Optimization3: 171– 192.

